Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Stevenson, Brian (Ed.)Ticks are the most important vectors of zoonotic disease-causing pathogens in North America and Europe. Many tick species are expanding their geographic range. Although correlational evidence suggests that climate change is driving the range expansion of ticks, experimental evidence is necessary to develop a mechanistic understanding of ticks’ response to a range of climatic conditions. Previous experiments used simulated microclimates, but these protocols require hazardous salts or expensive laboratory equipment to manipulate humidity. We developed a novel, safe, stable, convenient, and economical method to isolate individual ticks and manipulate their microclimates. The protocol involves placing individual ticks in plastic tubes, and placing six tubes along with a commercial two-way humidity control pack in an airtight container. We successfully used this method to investigate how humidity affects survival and host-seeking (questing) behavior of three tick species: the lone star tick ( Amblyomma americanum ), American dog tick ( Dermacentor variabilis ), and black-legged tick ( Ixodes scapularis ). We placed 72 adult females of each species individually into plastic tubes and separated them into three experimental relative humidity (RH) treatments representing distinct climates: 32% RH, 58% RH, and 84% RH. We assessed the survival and questing behavior of each tick for 30 days. In all three species, survivorship significantly declined in drier conditions. Questing height was negatively associated with RH in Amblyomma , positively associated with RH in Dermacentor , and not associated with RH in Ixodes . The frequency of questing behavior increased significantly with drier conditions for Dermacentor but not for Amblyomma or Ixodes . This report demonstrates an effective method for assessing the viability and host-seeking behavior of tick vectors of zoonotic diseases under different climatic conditions.more » « less
- 
            Abstract Ticks are vectors of many diseases and are expanding in geographic distribution. However, how ticks will fare in their new environments, where they may experience stressful climatic conditions at the expansion front, remains unclear. Since there is a trade‐off in ticks between behaviors that promote longevity and behaviors that promote reproduction, we hypothesized that extreme climatic stress reduces the survivorship of ticks but increases the frequency of tick host‐seeking behavior, or questing. Here, we used a novel method to simulate climatic stress on individual ticks of three species—Amblyomma americanum,Dermacentor variabilis, andIxodes scapularis—to evaluate their survival, physiology, and questing behavior. The first experiment involved placing 144 adult ticks of each species in two temperature ranges (15–25°C and 25–35°C) and three relative humidity (RH) treatments (32%, 58%, and 84% RH). We assessed the ticks daily for survivorship and questing, and we measured water loss by comparing the mass of each tick when it died to when it was fully hydrated. In this first experiment, ticks in warmer and less humid conditions generally died faster than those in cooler and more humid conditions. Ticks of all three species were more likely to quest shortly before their death and consistently died after losing approximately 50%–56% of their total body water content, butIxodesreached that threshold much faster than the other two species. The second experiment involved placing 18 ticks of each species at 35°C and 32% RH. We assessed the ticks every 3 h for survivorship, questing, and water loss. Ticks again were more likely to quest shortly before their death. With frequent checks, we were able to measure the dehydration tolerance more accurately and the rate of water loss. Ticks of all three species consistently died after losing approximately 51% of their total body water content. However,Ixodeslost water approximately 5 times faster thanAmblyommaand 11 times faster thanDermacentor. These results demonstrate that severe climatic stress tilts the trade‐off toward higher questing rates but not higher overall questing time because of reduced survival rates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
